

LECTURE #5– Suboxide MBE

Darrell G. Schlom

Department of Materials Science and Engineering Cornell University

Kavli Institute at Cornell for Nanoscale Science

Leibniz-Institut für Kristallzüchtung

Epitaxial Growth

D.G. Schlom, L.Q. Chen, X.Q. Pan, A. Schmehl, and M.A. Zurbuchen, Journal of the American Ceramic Society **91** (2008) 2429-2454.

RHEED of YBa₂Cu₃O₇

FIG. 1. Reflection high-energy electron diffraction (RHEED) patterns for the YBCO illms grown at various temperatures. Activated Reactive Evaporation," Appl Phys Lett. 53 (1988) 2232-2234.

Epitaxial Growth

RHEED of $Bi_2Sr_2CaCu_2O_{8+\delta}$ (Bi-2212) RARADIM

untwinned film

2° miscut; <110> azimuth

twinned film

(90° in-plane rotation twins)

employed a cold trap in which water is circulating during the growth.

gle crystal

nbach, J.S. Brooks, and Y. Maeno, 15 (2015) 5573-5577.

Outline of MBE Lectures

- What is MBE and what is it good for? Lecture #1 — Greatest hits of MBE
- How to grow your favorite oxide by MBE? Lectures #2-4 — Nuts and bolts of oxide MBE
- Detailed Examples of Oxide MBE Lectures #5,6 — Suboxide MBE High Purity Synthesis of Binary Oxides
- How can I gain access to an oxide MBE if I don't have one? Use PARADIM's oxide MBE (+ ARPES + ...)

Why Ga_2O_3 ?

Figure 1. Contours of constant Baliga figure-of-merit (BFOM) for various conventional, WBG and UWBG semiconductors, drawn on a log-log specific on-resistance versus breakdown voltage plot. This is the figure-of-merit of interest for low-frequency unipolar vertical power switches; the lower right region represents higher BFOM, hence higher performance.

a203 h-0a203 h 0a203 h 0a203 h 0a203 h 0a203 h-0a203 h β -Ga₂O₃ β -Ga₂O₃ a203 β-Ga203 β-Ga203 β-Ga203 β-Ga203 β-Ga203 β-Ga203 | β-Ga,O₃ β-Ga,O₃ β-Ga₂O₃ β-Ga₂O a, O3 B-Ga, O3 B-Ga2O3 B-Ga2O3 B-Ga2O3 B-Ga2O3 B-Ga2O3 β-Ga,O₃ β-Ga,O₃ β-Ga,O₃ β-Ga,O₃ β-Ga,O₃ β-Ga,O₃ β-Ga,O₃ β-Ga a203 B-Ga203 B-Ga203 B-Ga203 B-Ga203 B-Ga203 B-Ga203 B-Ga203 β -Ga₂O₃ β -Ga₂O₃ a₂O₃ β-Ga₂O₃ β-Ga a203 β-G203 β-Ga203 β-Ga203 β-Ga203 β-Ga203 β-Ga203 β-Ga₂O₃ β-Ga a203 B-Ga203 B-Ga203 B-Ga203 B-Ga203 B-Ga203 B-Ga203 β-Ga2O3 β-Ga2O3 β-Ga2O3 β-Ga2O3 β-Ga2O3 β-Ga2O3 β-G a₂O₃ ββ-Ga₂O m 1 2 3 4 5 6 7 8 9 10 11

 $a_2O_3 \beta - Ga_2O_3 \beta - Ga_2O$

Figure 6. Photograph of transparent 4"-diameter single-crystal Ga₂O₃ wafer. Copyright Tamura Corporation via Masataka Higashiwaki, National Institute of Information and Communications Technology.

4"β-Ga₂O₃ Single-Crystal Substrate

 β -Ga₂O₃ has High Bandgap $E_{g} = 4.7 \, \text{eV}$ **High Breakdown Field** $E_{\rm max} \approx 5 \, {\rm MV/cm}$ High Baliga Figure of Merit Dopable *n*-Type with good mobility $E_{\rm D} \approx 0.02 \, {\rm eV}$ (Si) $\mu \approx 200 \text{ cm}^2/(\text{V}\cdot\text{s})$

Thermal Conductivity

k = 11-29 W/(m K)

J.Y. Tsao, S. Chowdhury, M.A. Hollis, D. Jena, N.M. Johnson, K.A. Jones, R.J. Kaplar, S. Rajan, C.G.V. de Walle, E. Bellotti, C.L. Chua, R. Collazo, M.E. Coltrin, J.A. Cooper, K.R. Evans, S. Graham, T.A. Grotjohn, E.R. Heller, M. Higashiwaki, M.S. Islam, P.W. Juodawlkis, M.A. Khan, A.D. Koehler, J.H. Leach, U.K. Mishra, R.J. Nemanich, R.C.N. Pilawa-Podgurski, J.B. Shealy, Z. Sitar, M.J. Tadjer, A.F. Witulski, M. Wraback, and J.A. Simmons, "Ultrawide-Bandgap Semiconductors: Research Opportunities and Challenges," *Advanced Electronic Materials* 4 (2018) 1600501.

Low Growth Rate

- Growth Rate: 0.2 µm/hr (maximum reported is 0.7 µm/hr)
- Peak Mobility at this Growth Rate: **120 cm²/(V·s)** at room temperature

E. Ahmadi, O.S. Koksaldi, S.W. Kaun, Y. Oshima, D.B. Short, U.K. Mishra, and J.S. Speck, "Ge Doping of B-Ga₂O₃ Films Grown by Plasma-Assisted Molecular Beam Epitaxy," *Applied Physics Express* **10** (2017) 041102.

MOCVD is considerably better

- Growth Rate: ~0.5 µm/hr (up to 10 µm/hr reported)
- Peak Mobility at this Growth Rate: **194 cm²/(V·s)** at room temperature

 Z. Feng, A.F.M.A.U. Bhuiyan, Z. Xia, W. Moore, Z. Chen, J.F. McGlone, D.R. Daughton, A.R. Arehart, S.A. Ringel, S. Rajan, and H. Zhao, "Probing Charge Transport and Background Doping in Metal-Organic Chemical Vapor Deposition-Grown (010) B-Ga₂O₃," Physica Status Solidi RRL 14 (2020) 2000145.

Can MBE be improved for the growth of β -Ga₂O₃?

P. Vogt and O. Bierwagen, "The Competing Oxide and Sub-Oxide Formation in Metal-Oxide Molecular Beam Epitaxy," *Applied Physics Letters* **106** (2015) 081910.

2-step reaction mechanism explains:

 $\phi_{Ga} = 2/3 \phi_0$: 2 Ga(g) + 3 O(g) \rightarrow Ga₂O + 2 O \rightarrow Ga₂O₃ (s) (full Ga incorporation)

 $\phi_{Ga} = 2\phi_O$: 6 Ga(g) + 3 O(g) \rightarrow 3 Ga₂O ... no oxygen \rightarrow no Ga₂O₃(s) formation

P. Vogt and O. Bierwagen, "The Competing Oxide and Sub-Oxide Formation in Metal-Oxide Molecular Beam Epitaxy," *Applied Physics Letters* **106** (2015) 081910. P. Vogt and O. Bierwagen, "Quantitative Subcompound-Mediated Reaction Model for the Molecular Beam Epitaxy of III-VI and IV-VI Thin Films: Applied to Ga₂O₃, In₂O₃, and SnO₂," *Physical Review Materials* **2** (2018) 120401.

2-step reaction mechanism explains:

 $\phi_{Ga} = 2/3 \phi_0$: 2 Ga(g) + 3 O(g) \rightarrow Ga₂O + 2 O \rightarrow Ga₂O₃ (s) (full Ga incorporation)

 $\phi_{Ga} = 2\phi_0$: 6 Ga(g) + 3 O(g) \rightarrow 3 Ga₂O ... no oxygen \rightarrow no Ga₂O₃(s) formation

P. Vogt and O. Bierwagen, "The Competing Oxide and Sub-Oxide Formation in Metal-Oxide Molecular Beam Epitaxy," *Applied Physics Letters* **106** (2015) 081910. P. Vogt and O. Bierwagen, "Quantitative Subcompound-Mediated Reaction Model for the Molecular Beam Epitaxy of III-VI and IV-VI Thin Films: Applied to Ga₂O₃, In₂O₃, and SnO₂," *Physical Review Materials* **2** (2018) 120401.

Me₂O₃ Layer

Substrate

: Volatile Me₂O

2-step reaction mechanism explains:

 $\phi_{Ga} = 2/3 \phi_0$: 2 Ga(g) + 3 O(g) \rightarrow Ga₂O + 2 O \rightarrow Ga₂O₃ (s) (full Ga incorporation)

 $\phi_{Ga} = 2\phi_O$: 6 Ga(g) + 3 O(g) \rightarrow 3 Ga₂O ... no oxygen \rightarrow no Ga₂O₃(s) formation

P. Vogt and O. Bierwagen, "The Competing Oxide and Sub-Oxide Formation in Metal-Oxide Molecular Beam Epitaxy," Applied Physics Letters 106 (2015) 081910.

P. Vogt and O. Bierwagen, "Quantitative Subcompound-Mediated Reaction Model for the Molecular Beam Epitaxy of III-VI and IV-VI Thin Films: Applied to Ga_2O_3 , In_2O_3 , and SnO_2 " Physical Review Materials 2 (2018) 120401.

Suboxide (Ga₂O) MBE of β -Ga₂O₃

2-step reaction mechanism explains:

$$\begin{split} \varphi_{Ga} &= 2/3 \ \varphi_{O}: \ 2 \ Ga(g) + 3 \ O(g) \rightarrow Ga_{2}O + 2 \ O \rightarrow Ga_{2}O_{3}(s) \text{ (full Ga incorporation)} \\ \varphi_{Ga} &= 2\varphi_{O}: \ 6 \ Ga(g) + 3 \ O(g) \rightarrow 3 \ Ga_{2}O \ \dots \ \text{no oxygen} \ \rightarrow \ \text{no } Ga_{2}O_{3}(s) \text{ formation} \end{split}$$

Use $Ga_2O_3(s)$ rather than $Ga(\ell)$?

K.M. Adkison, S-L. Shang, B.J. Bocklund, D. Klimm, D.G. Schlom, and Z.K. Liu, "Suitability of Binary Oxides for Molecular-Beam Epitaxy Source Materials: A Comprehensive Thermodynamic Analysis," APL Materials 8 (2020) 081110.

Use $Ga_2O_3(s)$ rather than $Ga(\ell)$?

S. Ghose, S. Rahman, L. Hong, J.S. Rojas-Ramirez, H. Jin, K. Park, R. Klie, and R. Droopad,

"Growth and Characterization of B-Ga₂O₃ Thin Films by Molecular Beam Epitaxy for Deep-UV Photodetectors," Journal of Applied Physics **122** (2017) 095302.

Use $Ga_2O_3(s)$ rather than $Ga(\ell)$?

Maximum Growth Rate = 0.008μ m/hr Ga₂O₃ in Ir crucible at *T* = 1800-1980 ° C

Matthias Passlack (private communication).

Use $Ga(\ell) + Ga_2O_3(s)$ Mixture?

THE PRESSURE OF Ga₂O OVER GALLIUM-Ga₂O₃ MIXTURES

By C. J. FROSCH AND C. D. THURMOND

Bell Telephone Laboratories, Inc., Murray Hill, New Jersey

Received October 28, 1961

Mixture	with
Ga:Ga ₂ O ₃	₃ = 5:1

	LABLE L	
T°,K.	$P_{Ga2O}, atm.$	ΔH^{0}_{298}
1073	$1.56 imes 10^{-4}$	65.7
1173	$1.49 imes10^{-3}$	66.3
1223	$3.48 imes10^{-3}$	66.7
1273	$9.90 imes10^{-3}$	66.6
	$(\Delta H^{0}_{298}) = 66.3 \text{ kcal./mol}$	le
	$(\Delta H^0_{\rm Ga2O})_{298} = -20.7 \text{ kcal.}/$	mole

C.J. Frosch and C.D. Thurmond, "The Pressure of Ga₂O over Gallium-Ga₂O₃ Mixtures," *Journal of Physical Chemistry* **66** (1962) 877-878.

Use $Ga(\ell) + Ga_2O_3(s)$ Mixture?

P. Vogt, F.V.E. Hensling, K. Azizie, C.S. Chang, D. Turner, J. Park, J.P. McCandless, H. Paik, B.J. Bocklund, G. Hoffman, O. Bierwagen, D. Jena, H.G. Xing, S. Mou, D.A. Muller, S-L. Shang, Z.K. Liu, and D.G. Schlom, "Adsorption-Controlled Growth of Ga₂O₃ by Suboxide Molecular-Beam Epitaxy," *APL Materials* **9** (2021) 031101.

K.M. Adkison, S-L. Shang, B.J. Bocklund, D. Klimm, D.G. Schlom, and Z.K. Liu, "Suitability of Binary Oxides for Molecular-Beam Epitaxy Source Materials: A Comprehensive Thermodynamic Analysis," *APL Materials* **8** (2020) 081110.

Use $Ga(\ell) + Ga_2O_3(s)$ Mixture?

P. Vogt, F.V.E. Hensling, K. Azizie, C.S. Chang, D. Turner, J. Park, J.P. McCandless, H. Paik, B.J. Bocklund, G. Hoffman, O. Bierwagen, D. Jena, H.G. Xing, S. Mou, D.A. Muller, S-L. Shang, Z.K. Liu, and D.G. Schlom, "Adsorption-Controlled Growth of Ga₂O₃ by Suboxide Molecular-Beam Epitaxy," *APL Materials* **9** (2021) 031101.

Use $Ga(\ell)$ + $Ga_2O_3(s)$ Mixture?

900

Ga(I)

Ga₂O₃

Ga(I).

Ga₂O₃ .

Gas

1.1

P. Vogt, F.V.E. Hensling, K. Azizie, C.S. Chang, D. Turner, J. Park, J.P. McCandless, H. Paik, B.J. Bocklund, G. Hoffman, O. Bierwagen, D. Jena, H.G. Xing, S. Mou, D.A. Muller, S-L. Shang, Z.K. Liu, and D.G. Schlom, "Adsorption-Controlled Growth of Ga₂O₃ by Suboxide Molecular-Beam Epitaxy," APL Materials 9 (2021) 031101.

 $Ga_2O_3(s)$ -rich mixture provides higher Ga₂O/Ga Ratio in molecular beam

Use $Ga(\ell) + Ga_2O_3(s)$ Mixture

Kathy Azizie

Felix Hensling

High growth rate (> 1 μ m/hr) and epitaxial films at low T_{sub} (e.g., 450 ° C)

Suboxide MBE of β -Ga₂O₃ Grown at 1.2 μ m/hr

P. Vogt, F.V.E. Hensling, K. Azizie, C.S. Chang, D. Turner, J. Park, J.P. McCandless, H. Paik, B.J. Bocklund, G. Hoffman, O. Bierwagen, D. Jena, H.G. Xing, S. Mou, D.A. Muller, S-L. Shang, Z.K. Liu, and D.G. Schlom, "Adsorption-Controlled Growth of Ga₂O₃ by Suboxide Molecular-Beam Epitaxy," *APL Materials* **9** (2021) 031101.

Thermo of Suboxide MBE

K.M. Adkison, S-L. Shang, B.J. Bocklund, D. Klimm, D.G. Schlom, and Z.K. Liu, "Suitability of Binary Oxides for Molecular-Beam Epitaxy Source Materials: A Comprehensive Thermodynamic Analysis," *APL Materials* **8** (2020) 081110.

Suboxides offer an alternate means to navigate kinetic pathways

- Comprehensive investigation of vapor pressures of all binary oxides (128 oxides + 27 mixtures)
- 16 evaporate nearly congruently (As₂O₃, B₂O₃, BaO, MoO₃, OsO₄, P₂O₅, PbO, PuO₂, Rb₂O, Re₂O₇, Sb₂O₃, SeO₂, SnO, ThO₂, Tl₂O, and WO₃)
- + 24 more that could be useful (CeO, Cs₂O, DyO, ErO, Ga₂O, GdO, GeO, HfO, HoO, In₂O, LaO, LuO, NdO, PmO, PrO, PuO, ScO, SiO, SmO, TbO, Te₂O₂, U₂O₆, VO₂, and YO₂)

Realizing a New Semiconductor for Power Electronic Applications

External User Project - 2020

MIP: PARADIM at Cornell

University, DMR-1539918

Materials discovery is more than calculating the properties that a material should have if the atoms

were in desired positions. It is also key to get the atoms into those desired positions, to see what the properties really are, and thus realize the potential benefit of a new material. Making this happen takes a combination of ideas, capabilities, and execution—as the recent success by a team led by Assistant and Associate Professors from the University of Michigan illustrates.

Theoretical work by the team established that rutile-GeO₂—with its ultra-high band gap (4.64 eV), high mobility, high heat conductivity, and desired dopability—could provide superior performance for power electronics. But can this material be made as a thin film? The common synthesis approach would rely on deposition of the constituting elements, but for GeO₂ growth is obstructed by a metastable glass phase and the volatile molecule GeO.

The team came to PARADIM and employed a recently established approach of "sub-oxide MBE"—using partially oxidized GeO instead of Ge—to realize the material in thin film form. Sieun Chae, the same graduate student who did the first-principles calculations, also grew the films. Her work has realized the first single crystal rutile GeO_2 thin films.

S. Chae et al. Appl. Phys. Lett. 117, 072105 (2020).

John T. Heron and Emmanouil Kioupakis, University of Michigan

A promising material is identified by theory

Where Materials Begin and Society Benefits

Adsorption-Controlled Growth of

- Stannates by Suboxide MBE
 - **BaSnO₃** H. Paik *et al.*, *APL Materials* **5** (2017) 116107.
 - **SnO** A.B. Mei *et al.*, *Phys. Rev. Mater.* **3** (2019) 105202.
 - Sr₃SnO Y. Ma *et al. Adv. Mater.* **32** (2020) 2000809.
 - Ta₂SnO₆ M. Barone *et al. J. Phys. Chem. C* 126 (2022) 3764–3775.
- Gallates by Suboxide MBE
 - Ga₂O₃ P. Vogt *et al.*, *APL Mater.* **9** (2021) 031101.
- Indates by Suboxide MBE
 - ln_2O_3 P. Vogt et al., Phys. Rev. Appl. 17 (2022) 034021.

Laser Substrate Heater

CO₂ Laser Substrate Heater

- From EpiRay <u>https://epiray.de</u>
- Currently being tested
- Expect On-Line in PARADIM by end of 2022

Homogeneity at 1000 °C

All images courtesy Epiray

Laser Substrate Heater

- Laser heater for MBE
 - $T_{\rm sub}$ up to 2000 °C
 - *In situ* substrate termination demonstrated for:

MgO Al₂O₃ SrTiO₃ LaAlO₃ NdGaO₃ DyScO₃ TbScO₃

Expect On-Line in Expect On-Line by Experies of 2022 end of 2022

W. Braun, M. Jäger, G. Laskin, P. Ngabonziza, W. Voesch, P. Wittlich, and J. Mannhart, "*In situ* Thermal Preparation of Oxide Surfaces," *APL Mater.* **8** (2020) 071112.

Future of Oxide MBE

W. Braun and J. Mannhart, "Film Deposition by Thermal Laser Evaporation," *AIP Advances* **9** (2019) 085310. Expanded Growth Conditions Unlimited temperatures for substrate and sources

Robust

All heaters outside vacuum

Achieve Oxidation of the Film O₃ up to 10⁻³ Torr

Prevent Problematic Oxidation of the Sources Surface continuously evaporated Substrate Termination

In situ thermal termination

Maximum O₂ Pressure for MBE TLE?

D.G. Schlom and J.S. Harris, Jr., in Molecular Beam Epitaxy: Applications to Key Materials, edited by R.F.C. Farrow (Noyes, Park Ridge, 1995), pp. 505-622.

TLE – since 2019

GOT MBE?

Darrell G. Schlom schlom@cornell.edu