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• MBE:
1. 2Ga + ½ O2 → Ga2O

• Rate limiting step
2. Ga2O + 2O → Ga2O3

• Ga2O3 + Ga → Ga2O
• S-MBE: more efficient

1. Ga2O + 2O → Ga2O3
• Increase growth speed Ga2O Al

• Tunable lattice of 3.7-8.6 eV
• Higher intrinsic mobility than β-Ga2O3

• Electrically conducting + transparent 
up to 250 nm

1. Transistors
2. Solar-blind UV photodetectors
3. Photocatalysts

• ⍺-Ga2O3 is more stable on m-plane sapphire (Al2O3) than a-plane
• Stepped m-plane sapphire → RMS of 7.6 nm, 360 nm thick
• Flat m-plane substrates → RMS of 24.5 nm, 436 nm thick

• Directional conductivity, along cracks or streaks of β-Ga2O3

• Stepped substrates can’t be produced in an efficient manner
• Growth on flat substrates must be optimized

Stepped substrate growth AFM  Flat substrate growth AFM

❑ Phase 1: Growth on m-plane, flat substrates with no steps
• High T ⍺-(Al,Ga)2O3 buffer to fix directional conductivity by 

reducing lattice mismatch
• Al prevents β-Ga2O3 as Al2O3 and ⍺-Ga2O3 are isostructural

❑ Phase 2: Match stepped substrate conductivity w/ flat substrates
❑ Phase 3: Modulating carrier concentrations v. mobility

• Dislocation density estimations

• S1: no buffer
▪ No ⍺-Ga2O3

• S2: ⍺-Ga2O3 
▪ R: 64.2 Ω/□
▪ µ: 61.6 cm2/(V⋅s)
▪ FWHM: 0.283°

• S3: ⍺-(Al,Ga)2O3 
▪ R: 49 Ω/□
▪ µ: 78.8 cm2/(V⋅s)
▪ FWHM: 0.167°
▪ Hybrid peak between film and substrate peaks, associated with high order
▪ A buffer is clearly needed and adding aluminum increases mobility and lowers resistance

430±50 nm ⍺-Ga2O3 + Si doping

35 nm 750°C ⍺-(Al0.08Ga0.92)2O3 Buffer 

m-plane Al2O3 Substrate

• Sapphire & ⍺-Ga2O3 are isostructural with 4% lattice mismatch

• Best Stepped Film:
• ρ: 7.4×10-3 Ωcm
• FWHM: 0.352°

• Best Flat Film: 
• ρ: 1.9×10-3 Ωcm
• FWHM: 0.167°

• High PO3 & low 
film T results in 
better films than 
stepped substrates

Phase 3 Results

• SiO2 Source T varied from 1175-1400°C to 
control carrier concentration

• Decreasing resistance with increased 
carriers
• Si activation 50% → 25% at 1400°C, 

leading to higher resistance
• High mobilities suggest our high 

structural quality caused increased 
mobility with lower carriers
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Parameter Current 
Records AlGa722 AlGa726

FWHM 0.27° 0.167° 0.185°

Resistivity 2.7×10-2 Ωcm 2.01×10-3 Ωcm 1.67×10-3 Ωcm

Mobility 65 cm2V-1s-1 78.8 cm2V-1s-1 81.7 cm2V-1s-1

Dislocation 
Density 1011-1012 cm-2 3.72×108 cm-2 2.48×108 cm-2

• Below is an analysis of our best films (AlGa722, AlG726) to current literature 

RMS: 0.695 nm, 410 nm thick   RMS: 0.664 nm, 485 nm thick

• Optimizing aluminum alloying to increase bandgap
• Confirm dislocation density calculations with STEM

• Determine which estimation methods are accurate for ⍺-Ga2O3 
• Liquid nitrogen Hall measurements

• Lower T decrease polar optical phonon scattering
• Shows extent of ionized impurities and dislocation scattering 

limits
• Annealing Ti/Au contacts to create Ohmic contacts

• Allows us to measure mobilities at lower carrier 
concentrations currently unmeasurable due to high resistivity

• AlGa722 FWHM widens w/ ψ due to edge dislocations from 0.167° to 0.402°
• Hybrid peaks, associated with high order, present in both AlGa722 and AlGa726 
• AFM w/ no cracks or β-Ga2O3 formation, due to the high T buffer with aluminum  

AlGa722 AlGa726
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