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Abstract

The floating zone growth technique is a popular bulk crystal growth method for the discovery of new
materials and phases. The development of a digital twin for floating zone growths is of interest to accelerate
the materials discovery process with this technique. A key component of digital twins is a bidirectional
interaction between physical growths and digital models in the form of data-driven model updating. To lay
the foundation for data-driven model updating, we develop infrastructure to measure temperature distri-
bution data from the molten zone of Laser Diode Floating Zone (LDFZ) furnace growths. A hyperspectral
camera is installed in the furnace chamber and a hyperspectral pyrometry method is developed. For this, we
use machine learning to fit hyperspectral data to blackbody radiation spectra and determine temperature.
Finally, data streaming is used to automate the data analysis and storage of raw data and analysis results.
This allows seamless temperature distribution data collection to provide real-time temperature analysis
to experimenters and inform floating zone growth models. Using this infrastructure, we collect our first
hyperspectral images and temperature distribution maps from LDFZ growths.

Introduction

The floating zone technique is a popular bulk crys-
tal growth technique for many reasons, including
the ability to quickly synthesize small crystal sam-
ples and not needing a container in contact with
the sample during growth. In this technique, the
tips of a crystal rod and a feed rod are heated, and
the tips are joined to form a floating molten zone
from which a single crystal can be extracted.

A critical parameter in the physics of floating
zone growths is the temperature distribution in the
molten zone. To advance our understanding of the
physics of the molten zone, modelling of floating
zone growths simulate the temperature distribution
in the molten zone [1]. To inform and validate these
models, experimental data for temperature distri-
butions in floating zone growths is needed. In this
work, we develop the infrastructure need to collect
this data.

Three main steps were completed to develop this
infrastructure. A hyperspectral camera was physi-
cally placed in the furnace to collect hyperspectral
data from growths. A pyrometry method was also
developed to determine object temperature from
hyperspectral data. Finally, data streaming was
used to automate the analysis of hyperspectral im-
ages.

Camera Setup

We set up our hyperspectral camera in a Laser
Diode Floating Zone furnace (LDFZ). Since the

hyperspectral camera captures a line, it needs to
move vertically in the furnace to scan over the en-
tire growth. To accomplish this, we attach the cam-
era to a custom mount on a threaded rod. A mo-
tor spins the threaded rod, which is fixed in place,
causing the camera mount to move vertically.

The motion of this motor is controlled by a
Raspberry Pi, which we have programmed to re-
spond to and interact with the camera’s control
software. The camera is moved up and down re-
peatedly during image capture.

Hyperspectral Pyrometry

To determine object temperature from hyperspec-
tral data, least squares regression is used to fit spec-
tra to the form of theoretical blackbody radiation
spectra, optimizing a temperature parameter in the
process. The function form for blackbody radiation
from physics theory is given by
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where h is Planck’s constant, c is the speed of light,
kB is the Boltzmann constant, ϵ is the emissivity of
the blackbody, T is the temperature of the black-
body, and λ is wavelength.

Given that a wide variety of materials with vary-
ing emissivities are used in LDFZ growths, it is a
necessary regression parameter alongside tempera-
ture. Additionally, emissivity may vary with wave-
length, so we use a quadratic approximation [2].
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This yields

I(λ) =
(
a0 + a1λ+ a2λ

2
)
I0(λ)

where the coefficients a0, a1, a2 are parameters to
be optimized by regression. This emissivity term
will also absorb relative scaling of intensities due
to the camera’s internal correction.

Finally, we add a constant parameter term to ac-
count for stray light and relative correction by the
camera. The camera may internally make adjust-
ments that shift measured spectra up or down in
intensity, so we add a constant offset Ω to account
for such shifts in the regression. The final equation
for fitting is then

I(λ) =
(
a0 + a1λ+ a2λ

2
)
I0(λ) + Ω

with fitting parameters a0, a1, a2,Ω, T .

Data Streaming

Data streaming is implemented with OpenM-
SIStream [3]. A producer streams out raw data
from the lab, a stream processor performs the py-
rometry analysis and streams out the results from
PARADIM servers, and a consumer downloads the
results in the lab. With this pipeline, the data anal-
ysis process is automated, which allows real-time
measurement for furnace users and seamless large-
scale data collection.

Results and Discussion

Here we have a processed image of a section of the
molten zone. We can see the outline of a section of
the molten zone as well as a detailed temperature
distribution throughout, which is what we desired.
There are a few interesting aspects to note and im-
prove on for future work.

Firstly, aligning the camera and focusing in on
the molten zone proved to be a non-trivial task,
as demonstrated by the absence of the entirety of
the molten zone in the shown image. Additionally,
more testing and validation of the hyperspectral
pyrometry method will be performed. Testing for
the method was performed using images not from
an active floating zone growth, so adjustments and
optimizations may be possible for growths.

We also notice a dark pixel resulting from a
failed regression. There are a variety of possible
methods that can be explored to reduce the fail-
ure rate of regression. The main method used to
reduce the failure rate for this image was resolu-
tion reduction. By averaging neighboring pixel to
slightly blur the image, we are able to remove ex-
cess noise that can cause regressions to fail, de-
creasing the failure rate. We also acknowledge that
failures cannot be entirely avoided, and future work
will investigate methods to automatically identify
and disregard failures when results are used for fur-
ther analysis.

Finally, we will ultimately use data collected
through this infrastructure to inform models and
simulations of floating zone growths. Future work
will collect and curate a database of temperature
distribution images that can be used for this pur-
pose.
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