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Atomic Force Microscopy (AFM)

Reflection High-Energy Electron 
Diffraction (RHEED)

Sr:Ti flux ratio 5:1 for all experiments
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Thickness Series: STO on LAO at 1475°C

Adsorption-Controlled Growth Mechanism6 Adsorption-Controlled Growth Window for SrTiO3  (STO)

Substrates Suitable for Films Based on Lattice Match4

33 nm STO on LAO at 1475°C

6 nm                   8 nm                 14 nm             17 nm            20 nm

RMS = 2.969 nm RMS = 3.192 nm RMS = 1.157 nm RMS = 1.038 nmRMS = 1.335 nm

• One material more volatile than the rest
• Volatile material is oversupplied
• Volatile material incorporates stoichiometrically & excess desorbs 

back off → near-perfect film stoichiometry through self-limiting7 
growth.

SrTiO3 (STO) (113) was grown as a baseline for BST growth (BST with x = 0)
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Perovskite Oxides
• Exhibit tunable opto-electric properties
• Useful for many applications such as quantum computing and 

solar cells1,2

Crystal Quality & Strain
• High crystal quality is essential for leveraging these properties
• Films are grown on crystalline substrates to induce ordered 

growth
• Film strain critical in optimizing properties
• Film strain controlled by adjusting film and substrate lattice 

mismatch

Barium Strontium Titanate - BaxSr1-xTiO3 (BST)
• Cubic perovskite with tunable lattice constants (3.9-4.0 Å) 

based on Ba:Sr ratio (x)
• Useful as a pseudo substrate for fine-tuning strain in 

perovskite films
• Can reduce costs of high-quality perovskite film production by 

replacing expensive substrates 

Molecular Beam Epitaxy5

• Phase-pure STO (113) observed between 1425-1525 °C
• Best samples at 1450 °C & 1475 °C
• Impurities observed outside or on edge of highlighted growth 

window

STO 113

Conventional substrate heaters: up to ~1000°C
PARADIM laser heater: up to 2000°C 

Calculated window of temperature-pressure conditions for phase-
pure STO (113) growth (highlighted in green) from ΔG values8,9

? 

RMS = 3.749 nm RMS = 2.534 nm RMS = 1.958 nm RMS = 8.088 nm RMS = 1.089 nm

1425 °C                       1450 °C                 11475 °C             1500 °C            1550 °C

Temperature Series: 10 nm STO on LAO

STO Nucleation
• STO nucleates from islands, merging around 1475°C.
• Steps form when the film thickness reaches approximately 14 

nm.
• Impurities observed outside or on edge of highlighted growth 

window
• Further research: explore STO nucleation at different growth 

rates

BST Pseudo Substrates
• A combined understanding of STO and BaTiO3 (BTO) can be 

applied for BST pseudo-substrate growth.

Predictive Modeling
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• Ellingham-esque diagrams 
successfully predict the phase-pure 
growth window for STO (113).

• Similar calculations applied to 
zirconates and lead zirconium 
titanate (PZT).

• This approach can be expanded to 
other systems for experimental 
exploration.
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