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Molecular Beam Epitaxy (MBE) Growth in Adsorption-Controlled Windows Conclusions & Future Work
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growth window for STO (113).
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» Exhibit tunable opto-electric properties * One material more volatile than the rest Calculated window of temperature-pressure conditions for phase- * STO nucleates from isl_ands, merging around 14750;-
« Useful for many applications such as quantum computing and * Volatile material is oversupplied pure STO (113) growth (highlighted in green) from AG values®? * Steps form when the film thickness reaches approximately 14
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Conventional substrate heaters: up to ~71000°C

Crvstal Quality & Strain

» High crystal quality is essential for leveraging these properties
* Films are grown on crystalline substrates to induce ordered

PARADIM laser heater: up to 2000°C
* Phase-pure STO (113) observed between 1425-1525 °C
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_ S o _ -  Impurities observed outside or on edge of highlighted growth . | . . B
» Film strain critical in optimizing properties SrO surface window zirconates and lead zirconium IR S
« Film strain controlled by adjusting film and substrate lattice titanate (PZT).
mismatch SrTiO3 (STO) (113) was grown as a baseline for BST growth (BST with x = 0) + This approach can be expanded to
other systems for experimental
Barium Strontium Titanate - Ba,Sr,_ TiO; (BST) exploration.
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