

Hydroflux Synthesis of Copper Tellurates : Discovery of Three New Phases & **Competing Cu:Te Solubility Trends Through A-Cu-Te-O(H) [A = Cs, K, CS+K]**

Motivation

- Generation of materials depend on innovations in synthesis techniques to explore new regions of phase space. \rightarrow We need to try new things to get interesting results.
- Hydroflux synthesis combines the techniques [3]:
- **1.** Hydrothermal: reagents react with supercritical H_2O
- **2.** Flux: reagents react with fluxes, such as hydroxide.

- Hydroxide is highly basic while H₂O has low-melt temp.
- Combining both environments allow for unique formation reactions \rightarrow However there is a need to better understand their nature for rational synthesis.

Why an Alkali, Cu, and Te?

- Potential for new magnetic oxide phases!
- Fully oxidized Cu²⁺ has a d⁹ configuration. Can act as a model spin 1/2 ions \rightarrow Cu²⁺ ions can magnetically order based on their distances and geometries.
- Fully oxidized Te⁶⁺ has a full d¹⁰ shell and octahedrally coordinates to oxygen, facilitating Cu-Cu magnetic interactions via superexchange [2].
- Partially oxidized Te⁴⁺ exhibits the lone pair effect due to its s₂ electron pair and has anisotropic coordination. Expected to affect the magnetism in these systems as magnetic pathways may be disrupted or impeded [2].

Previous work showed that K-Cu-Te-O(H) generates 2D magnetic layers with alkali spacers. [1] Perhaps Cs could increase interlayer distance due to its large ionic radius!

Acknowledgements

Funding from NSF through: "REU-Site: Summer Research Program at PARADIM," DMR-2150446.

Madalyn R. Gragg¹, Allana G. Iwanicki^{2,3}, Maxime A. Siegler², Tyrel M. McQueen^{2,3}

1.Department of Physics, Oregon State University 2. Department of Chemistry, Johns Hopkins University. 3. Institute for Quantum Matter, William H. Miller III Department of Physics and Astronomy, Johns Hopkins University.

Conclusion

• Cs- system has vastly different solid formation dynamics than K- and K+Cs- despite having the similar inverse Cu:Te solubilities and in-solution reactions.

[1] Allana G. Iwanick et al. Hydroflux-Controlled Growth of Magnetic L-Cu-Te-O(H) Phases, 27 Mar 2024 [2] Eder, F. (2023). Crystal engineering of Oxidotellurates [Dissertation, Technische Universität Wien].
[3] Chance, M. W.(2014). Hydroflux Synthesis: A New and Effective Technique for Exploratory Crystal

Beavs & Jays <3 Chem. + Physics

