Real-time autonomous combinatorial experimentation: from atomic layer deposition to metal additive manufacturing

Ichiro Takeuchi University of Maryland

Live autonomous closed-loop materials science w/G. Kusne, A. McDannald (NIST)

CAMEO: Closed-loop autonomous materials exploration and optimization Nature Communications 11, 5966 (2020)

LEGOLAS: LEGO based Low-cost Autonomous System for Education MRS Bulletin **47**, 881 (2022)

Autonomous neutron diffraction explorer (ANDiE) Applied Physics Reviews 9, 021408 (2022)

Autonomous combinatorial experimentation: materials discovery via Bayesian active learning

Autonomous atomic-layer synthesis

w/ Haotong Liang (UMD), Yunlong Sun (U. Tokyo), Mikk Lippmaa (U. Tokyo)

Pulsed laser deposition for creating new materials and tune properties by controlling atomic arrangement at unit-cell level

Autonomous atomic-layer synthesis

w/ Haotong Liang (UMD), Yunlong Sun (U. Tokyo), Mikk Lippmaa (U. Tokyo)

JIVERSI)

Pulsed laser deposition for creating new materials and tune properties by controlling atomic arrangement at unit-cell level

Combinatorial pulsed laser deposition circa. 2000

Structure determination

Autonomous atomic-layer synthesis

JIVERSI)

w/ Haotong Liang (UMD), Yunlong Sun (U. Tokyo), Mikk Lippmaa (U. Tokyo)

RHEED is useful for understanding surface structures

Reciprocal lattice vector G is a 2D array of rods		Reciprocal lattice vector G is a 3D array of points	
 Spotty pattern Kikuchi line (secondary scattering) Atomically flat surface 	 Streaky pattern Common in MBE Disorder in the atomic-scale 	 Streaky + spotty pattern: 3D structures Transmission patterns: 3D structure mixed with 2D structure 	

......but it's usually for qualitative characterization

7

Quantitative live analysis of RHEED patterns using ML

(a) U-Net RHEED U-Net U-Net Feature Encoder Decoder Pattern Mask (c) (b)

Liang et al., Phys. Rev. Mat. 6, 063805 (2022)

Other ML work on RHEED: Vasudevan et al., ACS Nano **8**, 10899 (2014); Provence et al., Phys. Rev. Materials **4**, 083807 (2020).

東京大学

THE UNIVERSITY OF TOKYO

Quantitative analysis of RHEED patterns using ML

(b)

Based on ML of RHEED Images

Distance (nm⁻¹)

7.23 1-805 9,81 13.83 10-17.62 20.38 2-524 2-805 2-600 2-92 38.46 Growth phase map of FeO_x thin films: 10-3-383 3-524 3-600 3-734 3-805 3-927 3-1048 3-666 Po2 (Torr) 10- Fe_2O_3 vs Fe_3O_4 vs... as functions of O_2 10pressure and temperature during growth 5-383 5-805 5-1048 10-5 10-6 350 500 400 450 550 600 800 1050 ML workflow **RHEED** Images (a) Good agreement with "post mortem" XRD 10-10-2 Based on XRD (c) O₂ pressure 3-805 3-927 3-1048 Magnetite Fe₃O₄ Hematite Fe₂O₂ 10-3 1-805 10^{-} 2-383 2-927 10-4 10 5-1048 5-927 5-383 5-524 5-666 5-805 (Torr) 3-383 3-927 3-1048 10-10 10- 10^{-} 350 400 450 500 1050 1100 550 600 1000 Temperature 5-383 5-927 5-1048 10 10-Liang et al., Phys. Rev. Mat. 6, 063805 (2022) 350 400 450 500 550 1000 1050 600 700 750 800 T (°C)

Target material: metastable hexagonal TbFeO₃

Pbnm Phase Stable structure colinear antiferromagnetic order

P63/mmc Phase Metastable multiferroic, noncolinear antiferromagnetic order

X. Xu and W. Wang, *Multiferroic Hexagonal Ferrites* (*h-RFeO3*, *R* = *Y*, *Dy-Lu*): *A Brief Experimental Review*, Mod. Phys. Lett. **28**, (2014).

- Stabilize <u>metastable</u> hexagonal P63/mmc
- Search for optimal growth condition for thin films

Autonomous atomic-layer synthesis setup 2023

Calibration

High Speed Network Camera (Allied Vision)

Autonomous atomic-layer synthesis setup 2023

Low-light sensitive Camera (ELP)

New RHEED analysis pipeline 3:17:15 ON THE 20 Backbone Binary Classification (Epitaxial, Features Transmission, Polycrystalline) RAIN THIP -Periodicity Tracker RHEED CascadedM askRCNN Image Pattern Μ Tracker Masks (Spot, streak, DB)

High Speed Network Camera (Allied Vision)

Autonomous atomic-layer synthesis setup 2023

New RHEED analysis pipeline

- Multiple features are identified: epitaxial vs islands vs ring (polycrystalline)
- Sharpness of the peak
- Periodicity gives us the lattice constant can identify the phase

Autonomous live experimental loop for controlled relation relation relation for the true of the true

Parameters:

- O₂ pressure: 10⁻⁷-10⁻⁴ Torr (10 increments)
- Temperature: 600 1000 °C (16 increments)
- Laser pulse rate: 0.5 20 Hz (7 increments)
 - Total grid: 1100 experiments

Autonomous live experimental loop for controlled growth of hexagonal TbFeO₃

15 min per cycle

Parameters:

- O₂ pressure: 10⁻⁷-10⁻⁴ Torr
 (10 increments)
- Temperature: 600 1000 °C (16 increments)
- Laser pulse rate: 0.5 20 Hz (7 increments)

Total grid: 1100 experiments

Haotong Liang, J-C Zhao (MSE), Huapeng Huang (AAL)

(LDED tool)

Optical image of a printed superalloy

In-situ X-ray image detects defects not visible optically Compact X-ray source and detector mounted inside printer

Haotong Liang, J-C Zhao (MSE), Huapeng Huang (AAL)

Goal: develop a live closed-loop metal AM tool, which automatically evaluates the quality of printed materials, figures out how to optimize, and proceeds to find the best process conditions with minimum # of iterations w/ no human intervention

(LDED tool)

Optical image of a printed superalloy

In-situ X-ray image detects defects not visible optically Compact X-ray source and detector mounted inside printer

Haotong Liang, J-C Zhao (MSE), Huapeng Huang (AAL)

Haotong Liang, J-C Zhao (MSE), Huapeng Huang (AAL)

Hardware/software integration hack

Compact X-ray source and detector Camera for monitoring

Motor and actuators to replace a knob and on/off button

Superalloy (MAR-M247) printing:

minimize crack formation by controlling laser power and scan speed

Reality check: grid measurements: optical images

Superalloy (MAR-M247) printing:

minimize crack formation by controlling laser power and scan speed

Reality check: grid measurements: X-ray images

Computer vision workflow for identifying defects from X-ray images and quantify them

Demonstration of autonomous metal additive manufacturing

Liang, Takeuchi et al., to be published (2024)

Summary

We are developing various nimble autonomous materials science platforms

We have demonstrated:

- autonomous control of oxide thin film growth by PLD (the basis for autonomous semiconductor manufacturing)
- autonomous control of metal additive manufacturing

Acknowledgement

University of Maryland	Advanced Analyze	r NIST	Univ. of Tokyo
H. Liang	H. Huang	A. G. Kusne	M. Lippmaa
JC. Zhao			Y. Sun

Supported by NIST, ONR, AFOSR, and SRC

