

How *in situ* Characterization during Reactions Can Accelerate Materials Synthesis

Karena W. Chapman

Endowed Chair in Materials Chemistry Department of Chemistry, Stony Brook University

We can predict next generation materials...

How do we close the gap between synthesizable and synthesized?

Conventional materials synthesis is Edisonian

X-rays illuminate reaction pathway and products

X-rays can penetrate reactive systems without damage, to allow us to probe the mechanism and limitations

Controlling synthesis to access revolutionary materials

What are the key experimental controls?

The challenge of targeting products in the solid-state

Solid-state reactions are transport-limited.

High temperatures facilitate transport, however, high temperatures favor the thermodynamic product

Mechanism of solid-state reactions

Ion-exchange as a probe of transport limitations

Ion-exchange as a probe of transport limitations

Cooking while looking

To track reaction kinetics

J. Appl. Cryst. **2020**. 53, 662-670

Initial reaction is not rate-limited

Exploring transport limits using ion-exchange models

Exploring transport limits using ion-exchange models

$LiBr + NaFeO_2 \rightarrow NaBr + LiFeO_2$

J. Am. Chem. Soc. 2022, 144, 27, 11975–11979

The Role of Architecture in Controlling Reactivity

We manipulate microstructure to change the transport pathways on different length scales to identify contributions to transport limitations. 213°C 0.8 95% 78°C Completion C(t) Microstructure effect 213°C 178°C 0.2 Here the effect is larger than increasing reaction temperature or extending reaction time 0.0 10 30 20 Time / min

What if the system evolves too fast?

J. Appl. Cryst. 2008 41, 822-824

Heating rate is limited in conventional cells

J. Appl. Cryst. 2020. 53, 662-670

Rapid-Actuating Pneumatic Thermal Reactor - RAPTR

The RAPTR quickly heats and cools samples by translating them into and out of a pre-heated hot zone.

So the heating is only limited by the thermal mass of the sample itself

It adapts the resistive heating elements from the original or thermal gradient heater.

J. Appl. Crystallogr. **2024** 88-93

Fast heating performance

From diffraction thermometry we see the sample reaches the <u>target temperature within 10s</u>.

This means we can explore the fast kinetics in the early stages of the reaction using the RAPTR

Test reaction: Scheelite, PbWO₄

Scheelite-type oxides are synthesized via conventional solid-state synthesis routes, heating in air at high temperatures (700-900 °C) for hours

 $PbO + WO_3 \rightarrow PbWO_4$ <u>overnight</u> @ 750oC

Scheelite PbWO₄ has applications as a scintillator material, photocatalyst, and potential <u>solid electrolyte</u> for solid-oxide fuel cells

Scheelite, PbWO₃: The first 5 min

J. Appl. Crystallogr. 2024 88-93

Scheelite, PbWO₃: The first 5 min

 $PbO + WO_3 \rightarrow Pb$ -rich $PbO-WO_3$ melt + WO_3 (1)

Pb-rich PbO-WO₃ melt + WO₃ \rightarrow ¹/₃Pb₃WO₆ + ²/₃WO₃ (2)

 $\frac{1}{3}Pb_{3}WO_{6} + \frac{2}{3}WO_{3} \rightarrow PbWO_{4} (3)$

J. Am. Chem. Soc. 2023 26545–26549

Fast kinetics are common - Avrami analysis

There are dual kinetic regimes (fast then slower), with a well-defined transition between these.

The common slopes of the plot suggest characteristic

The challenge of targeting products in solution

Solution-phase reactions are dynamic but dilute.

The solution environment mediates transport but also influences the reaction outcome. Reactive species are a minor component

How can we control reaction to target specific metastable phases?

TiO₂ is highly polymorphic

There are 3 naturally occurring polymorphs with more accessible synthetically.

Reaction conditions must be carefully controlled to select individual polymorphs

Brookite (Metastable)

Rutile

Opening the hydrothermal black box

An alternative reaction environment

Hydrothermal reactors that are widely used to synthesize functional inorganic materials are not X-ray friendly.

NMR tubes are suitable for X-ray solution scattering measurements and can withstand hydrothermal pressures

Then we pointed a camera at the oven...

Watching the reaction evolve

We see 2 distinct cycles of TiO₂ formation and sedimentation.

J. Am. Chem. Soc. 2024, 10745–10752

Quantifying product concentration with luminance

Reaction kinetics over weeks

Resolving the atomic structure with X-rays

We use our custom heated sample changer to probe multiple samples, in parallel, for spatially resolved *in situ* X-ray scattering experiments

J. Appl. Crystallogr. 2023, 1732-1738

J. Am. Chem. Soc. 2024, 10745–10752

Rutile only forms during the first cycle

Anatase is the dominant product, with less of brookite, and a minor component of rutile

In preparation

Look at a wide array of samples simultaneously

The way chemistry impacts the kinetics tells us about rate limiting steps.

Some take aways

The critical phenomena can span multiple length scales

Concentration need to be defined on a specific lengthscale

Some take aways

The critical phenomena can span multiple length scales

New sample environments are critical to accessing different reaction conditions and time-scales

Solid state reactions can be fast!

Just focusing on the final product can be misleading

Some take aways

The critical phenomena can span multiple length scales

New sample environments are critical to accessing different reaction conditions and time-scales

High tech tools can provide valuable insights Low tech, accessible tools should not be overlooked

If we can capture, understand, predict and control synthesis pathways, we will be able to discover new materials phases, to prepare known phases with narrowly controlled structure, morphology & defects, and identify energy- and atom-efficient synthetic routes.

A NEXT **GEN**ERATION SYNTH**ESIS** CENTER

Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory, were supported by the U.S. Department of Energy under Contract No. DE-AC02-06CH11357.

Office of Science