

Forum on the Future of Synthesis MRS Fall 2024

Evaluating the *synthesis* and *synthesizability* of computationally-predicted materials (... a bold perspective of the Future of Synthesis)

Wenhao Sun

Dow Early Career Professor Materials Science and Engineering University of Michigan

Show of hands!

- How many of you are primarily experimentalists?
- How many of you are primarily computationalists?

- Were given, or gave, a predicted material that *could not be synthesized*?
- How many of you tried for >6 months? >1 Year? >2 years?

Give me a picture of a smug computational materials scientist who is making theoretical predictions of new materials that probably can't be made but they are very confident in their predictions Well, it's on the convex hull, so it should be synthesizable.

Well it's metastable, but only above the hull by 10 meV/atom, so you can make it *if you're clever enough*.

Well AXZ exists, so AYZ should be easy to make, since Y is similar to X.

Well, my AI synthesis predictor has a good RMSE/F1 score, and it says this material is 82% likely to be synthesizable Predicted next-gen battery materials still awaiting experimental realization

W. Richards, EES (2016)

+ Fastest Li-Ion Conductor + 10 meV/atom above hull

 Cannot synthesize at high enough Li/Zn ratios
 Phase impurities

Linda Nazar *U. Waterloo*

Ken Poeppelmeier Northwestern U.

Jordi Cabana U Illinois Chicago

These would be game-changing materials

Expert solid-state chemists devote years to attempt their synthesis...

PRX Energy

PERSPECTIVE OPEN ACCESS

From Design to Device: Challenges and Opportunities in Computational Discovery of *p*-Type Transparent Conductors

Rachel Woods-Robinson (1,2,3,*, Monica Morales-Masis (4, Geoffroy Hautier (5, and Andrea Crovetto (6)6

	•	→ 😱 -	► 🕂 →	-	►	-	▶ 📑 →	-	•
. Scr	reened	2. Deep dive	3. Synthesized	4. Thin film	5. p-TC film	6. Junction	7. Demo cell	8. Solar cell	9. Module
ł		Material	P-ty	pe TC "de	esign-to-de	evice" prog	ress	Bottl	eneck
	(a)	ZnZrN ₂	*	* / -=	+ <u>6-+-</u> +		→ →8	sy	nthesizability challenges
tions	(\mathbf{b})	ZrSO		► <u>}</u> *=		-	→ 	→ x	Thin film challenges
nal predic	(c) (Cs ₄ Cd ₂ SbCl ₁₂	₩ → ₩ ·	► <u>}</u> *=	****		→ *		DFT errors
omputatio	(\mathbf{d})	BP		≁∄≁∈	*		→ *		Poor crystal quality
Ŭ	(\mathbf{e})	CaCuP		+ / +=	→ ★ <u>→</u> *	→ ▲	→ → }	×	Spurious absorption
	$\langle \mathbf{f} \rangle$	Ta ₂ SnO ₆		≁∄≁≔	⋺₩ৣ৵		→ →		Dopability challenges
	(\mathbf{g})	CrMn ₂ O ₄		≁∄≁⊏	★ <u>+</u> +		→ →		Doping reduces ransparency
	(\mathbf{h})	TaIrGe		+ <u> </u> +=	⋺≁≞⋕	-	→ <u> </u> →		nsufficient research attention
	(\mathbf{i})	Ba2BiTaO6		≁∄≁∈	→	*	→ 	X	Dopability challenges

What does "synthesizable" mean?

- Is it even **possible** to make this material?
- What experimental **method** would be best to synthesize it? (Solid-State, Hydrothermal, Flux?)
- Within my method, what recipe should I use? (Precursors, Temp., Time, etc...)
- Can I make my material in the desired *form*?
- Can I synthesize it with high quality?
- Can I synthesize it *reliably* and *reproducibly*?
- Can I synthesize it *efficiently*? (Time, Electricity, \$\$ Cost, Labor)
- Can I synthesize it *at scale* for manufacturing?
- Is my material operationally stable?
- → Can I avoid the synthesis of undesired phases during operation?

Interfacial phases Corrosion byproducts Decomposition products

(Powder, Thin-film, Bulk Single Crystal)

(No killer defects)

Predicting Synthesis and Synthesizability

Thermodynamics

Epitaxial Thin Film

Kinetics

Bulk Crystal Growth

ML/AI Robotics

Modern materials are becoming very complicated

Multiferroric materials

- Electric polarization
- Magnetic polarization
- Epitaxial strain
- Gas fugacity
- Film composition
- Temperature

High-entropy alloys

- 5+ components
- Phase separation
- <u>Environment</u>
 - High temperature
 - Corrosion (*p*H, *E*)
 - Radiation (α, β, γ)

Solid-Liquid Interface

- Aqueous stability
- Phase Heterogeneity
- Electrical Double Layer
 - Chemisorption
 - Physisorption
 - Water polarization
 - Electric field

Phase diagrams are out of date!

Classical thermodynamics only has axes of temperature, pressure and composition

Phase diagrams are out of date!

Classical thermodynamics only has axes of temperature, pressure and composition

$$dG = -SdT + VdP + \sum_{i} \mu_{i} dN_{i} + \gamma dA + \phi dQ + \sigma_{ijkl} d\varepsilon_{ijkl} + \vec{E} \cdot d\vec{P} + \vec{B} \cdot d\vec{M} + \dots$$
Classical
Thermodynamics
Thermodynamics
Thermodynamic considerations
in modern materials

Type of work	Intensive variable	Extensive variable	Differential work in dU
Mechanical			
Pressure-volume	-P	V	-PdV
Elastic	f	L	fdL
Gravitational	$\psi = gh$	$m = \sum M_i n_i$	$\psi dm = \sum ghM_i dn_i$
Surface	γ	A _s 11	ydA.
Electromagnetic			
Charge transfer	ϕ_i	Q_i	$\phi_i \mathrm{d}Q_i$
Electric polarization	Ē	p	E•dp
Magnetic polarization	B	m	B•dm
Chemical			
Chemical: no reactions	μ_i	n_i (species)	$\mu_i dn_i$
Chemical: reactions	μ_i	n_{ci} (components)	$\mu_i dn_{ci}$

*Robert Alberty, "Use of Legendre Transforms in Chemical Thermodynamics", IUPAC Technical Report

Phase diagrams are out of date!

Classical thermodynamics only has axes of temperature, pressure and composition

$$dG = -SdT + VdP + \sum_{i} \mu_{i} dN_{i} + \gamma dA + \phi dQ + \sigma_{ijkl} d\varepsilon_{ijkl} + \vec{E} \cdot d\vec{P} + \vec{B} \cdot d\vec{M} + \dots$$
Classical
Thermodynamics
Thermodynamics
Thermodynamics
Thermodynamics

2) May become intrinsically high-dimensional

Nanoparticle Stability

Composition

The geometry of high-dimensional phase diagrams

- Construct → I. Generalized Gibbs Phase Rule
- Interpret
 II. Duality between open and closed chemical systems
- Navigate → III. Engineering Relative Stability in 4 Dimensions

Dr. Jiadong Chen

Phase Coexistence Regions in U(S,X) are N-dimensional triangles (Simplices)

In thin-film growth,

the Temperature-Composition diagram is useless

"I want InSe, but keep depositing In₂Se₃"

To make thin films, you control gas chemical potential, not composition!

<u>MBE</u>: Chamber pressure, Knudsen cell aperture, Plasma (RF/DC), Gas flow rate

MOCVD: Molecular precursor, gas ratios, flow rates

PLD: Laser energy, Fluence, Target-Substrate Distance The Geometry of High Dimensional Phase Diagrams II:

The duality between convex hulls and chemical potential diagrams

Jiadong Chen, M. Powell-Palm, Wenhao Sun, Arxiv 2404.05197 (2024)

TaON is stable on convex hull

But has very narrow chemical potential window

Need **precise** temperature, **very low** oxygen pressure, **very high** nitrogen fugacity

Jiadong Chen, M. Powell-Palm, Wenhao Sun, Arxiv 2404.05197 (2024)

Predicting Synthesis and Synthesizability

Thermodynamics

Epitaxial Thin Film

Kinetics

Bulk Crystal Growth

ML/AI Robotics

How are they so big? Why are there so few?

37" long, 12 ton, optical grade single crystal

Cave of the Crystals Naica Ore Mine, Mexico

Supersaturation from solution

Solidification by Cooling from Melt

Thermodynamic driving force

(supersaturation, undercooling) needs to be:

- 1) **Big enough** to promote crystal growth
- 2) Not so big that it triggers secondary nucleation

REVIEW | May 16, 2024

Tools and Tricks for Single Crystal Growth

Tanya Berry*, Nicholas Ng*, and Tyrel M. McQueen* Chemistry of Materials > Vol 36/Issue 10

Need the Liquidus!

- The system you want isn't in Thermocalc/Factsage

- DFT is only for solids, not liquids

Bulk crystal growth

Design of Fluxes for Growth of 'Buried Intermetallics'

- Crystals which do not melt congruently : chemical or peritectic decomposition
- * Crystal structure transition (polymorphism) strain and fractures
- Highly refractory materials delicate and expensive growth from the melt
- * High vapor pressure above Tm
- * Volatile constituent in the melt

If you have a DFT convex hull, there exists some G_{liquid} that reproduces the liquidus curve

If you have a DFT convex hull, there exists some G_{liquid} that reproduces the liquidus curve

Can interpolate from 3 binaries to a ternary

Predicting Synthesis and Synthesizability

Thermodynamics *Epitaxial Thin Film* **Kinetics** Bulk Crystal Growth

ML/AI Robotics

My opinion: Probably can't simulate your way to predictive synthesis even with machine-learned potentials

Friedrich, Aspuru-Guzik et al., Nature Materials (2021)

Even with >10¹² atoms + millisecond timescales:

- Cannot simulate over every synthesis condition.
- Cannot explore which synthesis method to use
- ML-potentials are expensive to train, don't have (good) chemical transferability.
- Hard to assess competitive phase formation

+ Understand dynamics, mechanisms, rate-limiting steps
+ Interrogate synthesis *science*, learn generalizable principles

My opinion: Text-Mining + ChatGPT can't directly predict synthesis

A critical reflection on attempts to machine-learn materials synthesis insights from text-mined literature recipes

Wenhao Sun 10 +* and Nicholas David 10 +

In the Ceder Group, I helped build text-mined recipes for 30,000+ solid-state syntheses and 50,000+ solution-based syntheses

- ML models capture how chemists *think* about synthesis, rather than something fundamental.
- ML predictions are not much different than what chemists would try anyway.
- + We can test new synthesis hypotheses against large historical datasets

+ Unusual/Anomalous recipes can be very insightful

nature synthesis

Article Open access Published: 30 January 2024

Optimal thermodynamic conditions to minimize kinetic by-products in aqueous materials synthesis

Zheren Wang, Yingzhi Sun, Kevin Cruse, Yan Zeng, Yuxing Fei, Zexuan Liu, Junyi Shangguan, Young-Woon Byeon, KyuJung Jun, Tanjin He, Wenhao Sun 🖾 & Gerbrand Ceder 🖾

Nature Synthesis 3, 527-536 (2024) Cite this article

Fig. 2: Thermodynamic competition analysis on text-mined dataset.

From: Optimal thermodynamic conditions to minimize kinetic by-products in aqueous materials synthesis

nature synthesis

Article Open access | Published: 09 April 2024

Navigating phase diagram complexity to guide robotic inorganic materials synthesis

Jiadong Chen, Samuel R. Cross, Lincoln J. Miara, Jeong-Ju Cho, Yan Wang 🖾 & Wenhao Sun 🖾

Nature Synthesis 3, 606-614 (2024) Cite this article

Sr_FeMoD₄ samples were prepared by solid-state reaction. Two elaboration processes have been used in order to improve the pointy of the samples. For the first one, which is done to the protocol used by most of groups, solic-interactic amounts of SrCO₄, Re₅O₄ and MeO₄ were mixed, ground and calcined at 900°C for 2h is an A₂ atmosphere. The calcined mistames were reground, presend and reduced for 1h andre camper flow do 5% 162/25% A₂ at 700°C. Alternarch the mistance were intered at 1200°C under argon flow during 10h.

Unfortunately, the last protocol does not allow one to obtain a pure Sr_FeMoO₈ compound. Instead, SrMaO₆ is thermodynamically favored. Therefore, a segregation occurs which makes it impossible to obtain a pure phase.

To get rid of this difficulty, we have developed a sintering process in which only one reaction is performed at each step in order to avoid the formation of SrMoO₄. Therefore, in the first tep, stochiometric amount of SrOO₄ Fe₂O₈ were mixed, ground and calcined at 100°C during 5h under an & fixe giving rise to $S_{1,5}$ FeO_{3,15} compound. Then stochiometric amounts of Sr₂FeO_{3,15}. MOO₄ and MoO₈ were moved, ground, pressed and wintered at 120°C during 2h under M₂/H₁ flow

Reaction Coordinate

Relative Target Yield (Predicted - Traditional)

My opinion: There is more to robotic labs than 'self-driving'

Many materials properties are easier to measure than to calculate

- Melting Temperature
- Solubility in aqueous/organic solvents
- Critical Vapor Pressure

What about autonomous robotic phase diagram assessment?

Predicting Synthesis and Synthesizability

Thermodynamics

Epitaxial Thin Film

Kinetics

Bulk Crystal Growth

ML/AI Robotics

Predicting Synthesis and Synthesizability

Group Website: <u>www.whsunresearch.group</u>

	The geometry of high-dimensional phase diagrams	arXiv
Construct \rightarrow Interpret \rightarrow Navigate \rightarrow	 I. Generalized Gibbs Phase Rule II. Duality between open and closed chemical systems III. Engineering Relative Stability in 4 Dimensions 	

Navigating phase diagram complexity to design more efficient solid-state syntheses Jiadong Chen, Sam Cross, Lincoln Miara, Eric Yan Wang, Wenhao Sun, Nature Synthesis (2024)

Efficient *ab initio* estimation of the high-temperature liquidus curve

Shibo Tan, Joshua Willwerth, Abrar Rauf, Wenhao Sun, In preparation

Optimal thermodynamic conditions to minimize kinetic by-products in aqueous materials synthesis Zheren Wang, **Wenhao Sun***, Gerbrand Ceder*, *et al.*, *Nature Synthesis* (2024)

DOE Early Career Award Synthesis and Processing Science

What does "synthesizable" mean?

- Is it even **possible** to make this material?
- What experimental **method** would be best to synthesize it? (Solid-State, Hydrothermal, Flux?)
- Within my method, what recipe should I use? (Precursors, Temp., Time, etc...)
- Can I make my material in the desired *form*?
- Can I synthesize it with high *quality*?
- Can I synthesize it *reliably* and *reproducibly*?
- Can I synthesize it *efficiently*? (Time, Electricity, \$\$ Cost, Labor)
- Can I synthesize it *at scale* for manufacturing?
- Is my material operationally stable?
- → Can I avoid the synthesis of undesired phases during operation?

Interfacial phases Corrosion byproducts Decomposition products

(Powder, Thin-film, Bulk Single Crystal)

(No killer defects)

Progressing along the energy landscape

Diffusion and Growth

Pathway dependent (bulk, dislocation, surface, liquid flux)